






The following summarizes the required measurements: 

Lower Atmosphere: 

Infrared limb spectrum: 800 to 4000 cm-' x 0.02 crnmL; all L,; 3 or more Mars 
years. 

Sub-mm radiometry: nadir to limb scan; selected frequencies from IR spectrum; 
same seasonal and duration coverage. 

Winds: surface to 130 km 

Upper Atmosphere and Exosphere 

Measurements of the following parameters are required throughout the solar cycle and 
particularly at solar maximum and solar minimum: 

Atomic and molecular neutral and ions listed in Table 2 

Vector magnetic field: crustal, upper atmosphere and solar wind. 

Ion and electron 3-Dim. energy distribution in the upper atmosphere and solar 
wind. 

Atmospheric winds above 130 krn 

The SAG identified the following candidate instruments that would be required to make 
the recommended observations described above: 

High Resolution IR Spectrometer. Measure the IR spectrum 800 to 5000 cm-'. 
Limb measurements (solar occultation).of molecular composition to <lo-'' mrbv 

Sub-mm Radiometer; channel frequencies by command; nadir to limb scan. 
Measure the spatial distribution selected species in lower atmosphere. Measure 
zonal and longitudinal components of lower atmosphere winds. 

High Resolution Neutral Mass Spectrometer; mass range 1 to 1 OOamu, mass 
resolution -3000. Measure the neutral composition and structure of the upper 
atmosphere. 

Retarding Potential Analyzer. Measure neutral and ion (thermal ions) species 
and fluxes in upper atmosphere; measure upper atmosphere winds. 

Ion/Electron Detector. Measure the velocity distribution of solar wind ions and 
electrons, pickup ions, etc. 

UVSpectrometer. Determine the properties of the hot corona and the aurora. 

Langmuirprobe. Measure the electron temperature and plasma density. 



Vector Magnetometer. Characterize the solar wind, the bow shock, and the 
magnetic pile-up boundary. Characterize the magnetic properties of the 
ionosphere and exosphere, and map the crustal magnetic field. 

C o n t w  camera; record atmospheric phenomena, hazes, clouds, dust storms, 
polar activity; synoptic nadir observations; limb observations w/<l km vertical 
resolution 

This information is also displayed in Table 4. 

INSTRUMENT DEVELOPMENT NEEDS 

A major characteristic of the science activities on MSTO is to cany out measurements 
that span the relatively long time period of a solar cycle. The requirement that the 
instrument payload be capable of functioning in the Mars environment for this duration 
will necessitate a development program that adequately ensures their survival. Previous 
missions, such as Cassini, Rosetta, etc., have carried out such design-lifetime verification 
programs within acceptable financial resource allocations and a similar program will be 
necessary for MSTO. 

Additionally, many of the proposed instrument types have technical issues that would 
require early attention. Even those with a high Technology Readiness Level (TRL) will 
benefit from developments resulting in lower mass and power requirements. Upper 
atmosphere neutral wind devices and mass spectrometers will need some further 
development resources to enable them to fit the MSTO mission profile, for example. 

Instruments needed to make critical atmospheric measurements include Fourier 
Transform Infrared Spectrometers and Sub-millimeter Radiometers. Both of these are 
relatively mature instrument types. However, technology development needs arise from 
the constant evolution of mission and system architectures and the needs for new, more 
sensitive measurements. 

Fourier Transform Infrared S~ectrometers require detectors cooled to the temperature 
range of 80-1 00K in order to achieve the required sensitivity. Instruments with detectors 
cooled to this temperature range have been used in earth orbit, in sun synchronous orbits, 
and in a small number of planetary instruments. For many of these the low detector 
temperature was achieved by the use of radiative coolers, designed to minimize structural 
and environmental heat loads and maximize the view of a radiator to cold space. 
Minimizing heat loads implies very careful structural, thermal and electronic design to 
isolate the cold detectors or optics from warmer parts of the instrument and spacecraft. 
Maximizing and maintaining the view from the radiator to cold space places constraints 
on the spacecraft configuration, orbit design and spacecraft pointing, to prevent solar or 
planetary radiation from entering the radiator field of view. 

Recently, mechanical refrigerators (crvocoolers) have been used in earth orbiting 
spacecraft to avoid these problems. They have been designed to achieve multi-year 
lifetime and to minimize vibration inputs to the detectors. The tradeoff is that these 
coolers have been heavy and expensive. Technology approaches have recently been 
identified which have the potential to provide long life, low cost, low mass cryocoolers. 
These designs have been produced in response to military requirements for cooling 



infrared detectors in harsh environments. They are pulse tube coolers using non- 
contacting, flexure bearing compressors that provide refrigeration in the range of 1 W to 
4W at 80K. The new mechanical designs reduced their mass to just a few kg. Similarly, 
recent improvements in cooler drive electronics have reduced electronics packaging mass 
and volume significantly over their predecessors. 

Consideration of cooler options in the overall spacecraft design would ensure that cooled 
instruments can be accommodated at reasonable cost without overly constraining the 
spacecraft design or placing too great a burden on instrument design. Provision of 
cooling as a spacecraft resource is one way to accomplish that objective. 

Sub-millimeter saectrometers are in demand for multiple planetary science mission 
applications. These instruments have in the past used detector technology that was 
difficult to fabricate and provided low device yield. To meet future demands for 
instrument performance and cost, promising new detector technologies, e.g. membrane- 
based sub-millimeter receiver components, must be developed to a Technology 
Readiness Level appropriate to insertion into a flight project. Even though sub- 
millimeter receiver technology has been infused into flight instruments in the past (e.g. 
MIRO on the Rosetta Orbiter, EOS MLS, Herschel HIFI), the new membrane-based 
process offers several advantages over these previous device processing approaches, 
including better yield and greater spectral coverage. Development of this technology will 
provide lower cost, higher performance instruments that can be developed in the time 
frames required by flight projects. 
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Figure 1.  A sketch of the structure of the Martian plasma environment, depicting the 
major boundaries and regions in the equatorial plane. The scales are Mars radii. 
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Figure 2. (After Mazelle et al., 2002; See also Winterhalter et al, 2001). Magnitude of 
the magnetic field recorded by Mars Global Surveyor during an early elliptical orbit 
(October 1 1, 1997) around periapsis (14:28 UT, altitude 120 km, 17.6 local time) 
displaying the major plasma boundaries symmetrically on both sides: BS, MPB and CB 
denote the bow shock, the magnetic pile-up boundary and the magnetic 'cavity 
boundary', respectively. The horizontal axis shows both time and the spacecraft 
coordinates in the Mars-centered solar orbital (MSO) system (the X-axis points from 
Mars to the Sun, the Y-axis points anti-parallel to Mars' orbital velocity, and the Z-axis 
completes the right-handed coordinate system). 



Figure 3. Key components of the Mars general circulation. 

Figure 4. The solar wind pressure varies over the solar cycle, as does the upper 
atmosphere and ionosphere-controlling solar EUV flux. The escape rates of heavy 
atoms and H are expected to be significant at high solar activity. There is no in situ data 
at present. Thus measurements at solar max are essential (necessary, but not 
sufficient). 



Figure 5. MSTO initial orbit design: Science Phase 1 (red) 150 x 6500 h, 
duration 1 year. Science Phase 2 (yellow) 400 x 400 km, duration 1 year. 
Telecom Infrastructure Phase (green) 400 x 2000 km, duration 8 years. 



Figure 6. Solar occultation coverage for a 150 x 6500 krn orbit over 2 years. Red and 
blue footprints correspond to 8 and 4 km vertical resolution, respectively. 



Table 1.  Relationship between MSTO Science Questions and Objectives, MEPAG Mars 
Scientific Goals, (MEPAG 2006) and the recommendations of the Decadal Study, (New 
Frontiers in the Solar System, NAS 2003). 

SO-1 

SO-2 

SO-3 

SO-4 

SO-5 

Science Objective 
Description 

Characterize present- 
day atmospheric escape 
Determine relative 
abundances of minor 
and trace molecular 
species of lower 
atmosphere 
Measure zonal and 
meridional winds 
Map crustal magnetic 
field w1100km 
resolution 
Use radar or SAR to 
locate subsurface 
regions of special 
interest 

Applicable 
MSTO SAG 

Questions 
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1I.A. 1 ,  II.A.3, 
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I.C.4,11.A. I ,  
1I.B. 1 

1I.A. 1, II.A.3, 
II.B.2 

II.B.2 

III.A.1, III.A.2, 
III.A.5 



H, H+, HZ, H;, D, D', HD, HD' 
12C, 12C+, 13C, 13C+ 

14 + 15 1 4 ~ ,  N , N, "N+, 1 4 ~ 2 ,  14~2+,  1 5 ~ 2 ,  1 5 ~ 2 +  

16 + 18 18 + 1602, 1602+, lao2, 1802+ 160, 0 , 0, 0 , 

H20 

CO, c o + ,  C02, c02+ 

NO, NO' 

3 6 ~ r ,  3 6 ~ r + ,  3 8 ~ r ,  3 8 ~ r '  

Table 2. Upper atmosphere atomic and molecular species to be monitored. 

Species 

C2H2 

C2H4 

C2H6 

C2H8 

N2O 

NO2 

NH3 

PH3 

so2 
OCS 

H2S 

CH20 

HC1 

Upper limit 
(mixing ratio) 

2~ 1 o - ~  
5x1 om7 
4x 1 o - ~  
4x 1 o - ~  
1~10-'  

1x10-~ 

5x 1 o - ~  
I X ~ O - ~  

3x1 0-8 

7x 1 0-' 

2x 1 om8 
3x1 o - ~  
2~ 1 o - ~  

Type of observation Reference 

Maguire (1 977) 
I t  

Encrenaz et al. (1 99 1) 
11 

Krasnopolsky et al. (1997) 
11 

Table 3. Upper limits for some of the plausible trace molecular constituents of the 
Martian atmosphere for which spectroscopic searches have been made. (From Ecrenaz 
et al., 2004.) 



Table 4. Relationship between MSTO science objectives, required measurements and 
proposed instrument types. 

OBJECTIVE 

Composition of 
the lower 
atmosphere 
(0-2) 

Upper 
atmosphere 
escape 
processes and 
fluxes 
(0-1 , 0-4) 

Dynamics 
(0-1. 0-2, 0-3) 

INSTRUMENT 
[Sample Instr.] 

High resolution infrared 
spectrometer 

(2000-5000 cm") 
[A TMOS, ACE] 

Sub-mm radiometer 

Context Camera 
[MARC/, etc.] 

High-resolution 
lonlNeutra' Mass 

Spectrometer 
[ROSINA, etc.] 

- 
Retarding Potential 

Analyzer (RPA) 
[Viking, UTD] 

IonIElectron Detector 
[PEPE, etc.] 

UVIEUV Spectrometer 
[ALICE] 

Langmuir Probe 
[Cassini, UTD, UM, 

etc.] 
Vector Magnetometer 

[Fluxgate; Vector 
Helium] 

Sub-mm radiometer 
(CO channel) 

RPA 
[Viking, UTD] 

Vector Magnetometer 
[Fluxgate; Vector 

Helium1 

MEASUREMENT 

Molecular 
constituents, vertical 
profiles of 
concentration, 
spatial distribution 

Observation of 
clouds, hazes, dust 

Measure the 
concentrations, 
vertical profiles and 
escape fluxes of the 
upper 
species (See Table 
2) 

Measure the upper 
atmospheretsolar 
wind interaction 
boundaries, and 
crustal magnetic 
fields 

Zonal and 
meridional winds 

Therrnospheric 
winds 

OBSERVATION 
MODE 

Solar occultation 

Nadir-limb scans 

Limb and wide-angle 
nadir 

In situ (periapse) 

In situ 

In 

Scan plafform 

In situ 

In situ 

Nadir-limb scans 

In situ 

In situ 

ALTITUDE 
RANGE 

0-130 krn 

100 - 6500 km 

0 -  130km 

> 130 km 




